Public Key Encryption
from trapdoor permutations

Public key encryption:
definitions and security

Public key encryption

Bob: generates (PK,SK) and gives PK to Alice

Alice Bob
m E C C D
1 1

pk sk

Applications

Session setup (for now, only eavesdropping security)

Alice pk Bob

Generate (pk, sk) choose random x

E(pk, x) (e.g. 48 bytes)

X

Non-interactive applications: (e.g. Email)
* Bob sends email to Alice encrypted using pk

alice

* Note: Bob needs pk

Jice (public key management)

Public key encryption

Def: a public-key encryption system is a triple of algs. (G, E, D)
 G(): randomized alg. outputs a key pair (pk, sk)
 E(pk, m): randomized alg. that takes mE&M and outputs c €C

 D(sk,c): det. alg. that takes c€C and outputs meM or L

Consistency: V(pk, sk) output by G:
VmeM: D(sk, E(pk, m))=m

Security: eavesdropping

For b=0,1 define experiments EXP(0) and EXP(1) as:

pk
b
< mg,m; e M: |mgy| =|m,|
c < E(pk, mh) c {0’1}

EXP(b)

Def: E =(G,E,D) is sem. secure (a.k.a IND-CPA) if for all efficient A:

Adve [AE] = | PrlEXP(0)=1] = PrEXP(1)=1] | < negligible

Relation to symmetric cipher security

Recall: for symmetric ciphers we had two security notions:
 One-time security and many-time security (CPA)
 We showed that one-time security 75 many-time security

For public key encryption:
 One-time security = many-time security (CPA)

(follows from the fact that attacker can encrypt by himself)

* Public key encryption must be randomized

Security against active attacks

What if attacker can tamper with ciphertext?

to: caroline@gmail body

A% attacker: l
PK;erver to: attacker@gmail body

>

>

Attacker is given decryption of msgs
that start with “to: attacker”

mail server
(e.g. Gmail)

\

sk

server

Bt Y

attacker

(pub-key) Chosen Ciphertext Security: definition

E =(G,E,D) public-key enc. over (M,C). For b=0,1 define EXP(b):

Chal.
(pk,sk)«G()

pk

CCAphasel: ¢ eC

m, <— D(sk, ¢;)

challenge: my,, m;, e M: |my|=|m,]|

v

C < E(pk, m,)

CCAphase2: ¢ eC: -

»
»

m, <— D(sk, ¢;)

Adv. A

b’ e {0,1}

Chosen ciphertext security: definition

Def: [Eis CCA secure (a.k.a IND-CCA) if for all efficient A:
Advees IAE] = | PrIEXP(0)=1] = PrlEXP(1)=1] | is negligible.

Example: Suppose [T —
pk X

b Chal. Adv. A

(pk,sk)<«—G() ‘chal.: (to:alice, 0) , (to:alice, 1)

C

C < E(pk, my)] (to: david, b)
CCA phase 2: ¢’ = BELCHCENTERIMN #C

m’ < D(sk, c¢’) " ,

Active attacks: symmetric vs. pub-key

Recall: secure symmetric cipher provides authenticated encryption
[chosen plaintext security & ciphertext integrity]

 Roughly speaking: attacker cannot create new ciphertexts

* Implies security against chosen ciphertext attacks

In public-key settings:
e Attacker can create new ciphertexts using pk !!
 Soinstead: we directly require chosen ciphertext security

Public Key Encryption
from trapdoor permutations

Constructions

Goal: construct chosen-ciphertext secure public-key encryption

Trapdoor functions (TDF)

Def: atrapdoor func. X—Y is a triple of efficient algs. (G, F, F1)
 G(): randomized alg. outputs a key pair (pk, sk)
* F(pk,:): det. alg. that defines a function X —Y

* F(sk,): definesafunction Y— X thatinverts F(pk,-)

More precisely: V(pk, sk) output by G
vxeX: F1(sk, F(pk, x))=x

Secure Trapdoor Functions (TDFs)

(G, F, F1)is secure if F(pk,:) isa “one-way” function:

can be evaluated, but cannot be inverted without sk

Chal. Adv. A
(pk,sk)<«G()
x(ix pkl y < F(pkr X) R X’

Def: (G, F, F1) is a secure TDF if for all efficient A:

Advoy [AF] = Pr[x=x"] < negligible

Public-key encryption from TDFs

e (G,F F1): secureTDF X —>Y
* (E, D) : symmetric auth. encryption defined over (K,M,C)

e H: X — K ahash function

We construct a pub-key enc. system (G, E, D):

Key generation G: same as G for TDF

Public-key encryption from TDFs

e (G,F F1): secureTDF X —>Y

* (E, D) : symmetric auth. encryption defined over (K,M,C)

e H: X — K ahash function

E(pk, m) :
X <& X,

k < H(x),

y < F(pk, x)
c < E(k, m)

output (y,)

D(sk, (v,c)) :

x «— F1(sk, y),
k «<— H(x), m «— Dk, c)
output m

L J\ J
i

Y
header body

Security Theorem:

If (G, F, F!) isasecure TDF, (E, D,) provides auth. enc.
and H:X— K isa “random oracle”
then (G,E,D) is CCA™ secure.

Incorrect use of a Trapdoor Function (TDF)

Never encrypt by applying F directly to plaintext:

E(pk, m) : D(sk, c):
output c <« F(pk, m) output F1(sk, c)
Problems:

 Deterministic: cannot be semantically secure !!

Public Key Encryption
from trapdoor permutations

The RSA trapdoor
permutation

Review: trapdoor permutations

Three algorithms: (G, F, F1)
 G: outputs pk, sk. pkdefines a function F(pk, :): X —> X
* F(pk, x): evaluates the function at x

. F'l(sk, y): inverts the function at y using sk

Secure trapdoor permutation:

The function F(pk,) is one-way (without the trapdoor sk)

The RSA trapdoor permutation

First published: Scientific American, Aug. 1977.

Very widely used:
— SSL/TLS: certificates and key-exchange
— Secure e-mail and file systems

... many others

The RSA trapdoor permutation

G(): choose random primes p,q ~1024 bits (300 digits). Set N=pq.
choose integers e,d st. e.d=1 (mod ¢(N))

output pk=(N,e) , sk=(N,d)

F(pk, x): Z?\f s Z}k\f ; RSA(x) = x° (in Z)

Fi{sk,y)=y?; y? = RSA(x)" = x* = x

RSA summarized

Choose random primes p and q (keep secret, delete after key generation)
Calculate N =p.q (public)

Calculate @(N) = (p—1) * (q — 1) (keep secret, delete after key generation)
Choose e:l<e<o(N) (public, integer and coprime to ¢(N))
Calculate d = e ! mod ¢(N) (keep secret)

Public key: K;, = (N, e) Private key: K. = (N, d)

E(K,,x)= x*mod N =c D(K,,c) = c®mod N = x

(x$)*mod N = x mod N

The RSA assumption

RSA assumption: RSAis one-way permutation

For all efficient algs. A:

Pr[A(N,e,y) = y*/°] < negligible

where p,q <& n-bit primes, N<—pq, y<tZ

Review: RSA pub-key encryption (so st)

(E,, D,): symmetric enc. scheme providing auth. encryption.
H: Z, —> K where Kis key space of (E,,D,)

e G(): generate RSA params: pk=(N,e), sk=(N,d)

 E(pk, m): (1) choose random x in Z,
(2) vy < RSA(x) =x® , k<« H(x)
(3) output (y, E(k,m))

/k\
* D(sk, (y,c)): output D(Hw), c)=m

Textbook RSA is insecure

Textbook RSA encryption:
— public key: (N,e) Encrypt: ce—m° (in Z,)

— secret key: (N,d) Decrypt: ¢ > m

Insecure cryptosystem (deterministic enc.)!!

— Is not semantically secure and many attacks exist

= The RSA trapdoor permutation is not an encryption scheme!

A simple attack on textbook RSA

CLIENT HELLO R
random g
. SERVER HELLO (e, N)
session-key k
c=RSA (k) ‘

Suppose k is 64 bits: k € {0,...,2%4}. Evesees: c=k" in Z,

If k=k;-k, where ki, k,<23* (prob.~20%) then cfk;"=k," in Z,

Step 1: build table: c/1¢, ¢/2¢, c/3¢, ..., c/23%¢ . time: 234

Step 2: for k,=0,...,, 23 testif k,° isin table. time: 234

Output matching (k;, k). Total attack time: =290 << 2%4

Public Key Encryption
from trapdoor permutations

PKCS 1

RSA encryption in practice

Never use textbook RSA.

RSA in practice (since ISO standard is not often used):

msg Preprocessing
4’

128-bit

Symm. Enc. Key,
e.g. AES key

RSA

2048-bit
Main questions:

— How should the preprocessing be done?
— Can we argue about security of resulting system?

P KCS 1 V 1 . 5 Public Key Cryptography Standards

PKCS1 mode 2: (encryption)
16 bits ~ 1900-bit 16-bit 128-bit (key)
02 random pad FF msg
S~ _
—

RSA modulus size (e.g. 2048 bits)

L RSA() == ciphertext c

* Resulting value is RSA encrypted

* Widely deployed, e.g. in HTTPS

AttaCk on PKCS]. V1.5 (Bleichenbacher 1998)

PKCS1 used in HTTPS:

(it >,

¢~ [ciphertex]

C

yes: continue
no: error

—> attacker can test if 16 MSBs of plaintext =’02’
Chosen-ciphertext attack: to decrypt a given ciphertext C do:

— Choose r e Z,. Compute ¢’ «—rec =(r- PKCSl(m))e

— Send ¢’ to web server and use response
— Repeat by sending ciphertext queries as many times as needed to recover C

Baby Bleichenbacher

compute x<—c? in Z, c= [ciphertext]
. C
0o yes: continue ‘
i - no: error '

Suppose Nis N=2" (aninvalid RSA modulus). Then:

 Sending c¢ reveals msb(x) x=PKCS1(m)

* Sending 2%-c=(2x)¢inZ, reveals msb(2x mod N) = msb,(x)
* Sending 4°-c=(4x)® inZ, reveals msb(4x mod N)=msb,(x)
e ...and so on toreveal all of x

HTTPS Defense csug

Attacks discovered by Bleichenbacher and Klima et al. ... can be avoided
by treating incorrectly formatted message blocks ... in a manner
indistinguishable from correctly formatted RSA blocks. In other words:

1. Generate a string R of 46 random bytes

2. Decrypt the message to recover the plaintext M (session key)

3. If the PKCS#1 padding is not correct (+ 02)
pre_master_secret = R

Session will terminate (since client and server ended up with
different session keys)

PKCS1v2.0: OAEP grimatsoymm

Encryption Padding

New preprocessing function: OAEP [BRros]
128-bit key pad

2048-bit msg 01 00..0

check pad
on decryption.
reject CT if invalid.

2048-bit nlaintext to encrypt with RSA e{0,1}"*

Thm [rops'o1] : RSA is a trap-door permutation = g RSA()

RSA-OAEP is CCA secure when H,G are random oracles

in practice: use SHA-256 for Hand G

Public Key Encryption
from trapdoor permutations

s RSA a one-way
function?

|s RSA a one-way permutation?

To invert the RSA one-way func. (without d) attacker must compute:

x from c=x° (mod N).

How hard is computing e’th roots modulo N ??

Best known algorithm:
— Step 1: factor N (hard)

— Step 2: compute e’'th roots modulo p and q (easy)

* Given both e'th roots, it's easy to combine them together, using the
Chinese remainder theorem to recover the e'th root modulo N.

Shortcuts?

Must one factor N in order to compute e’th roots?

To prove no shortcut exists show a reduction:

— Efficient algorithm for e’th roots mod N
obtains = efficient algorithm for factoring N.

— Oldest problem in public key cryptography (and still open).

Some (weak) evidence no reduction exists: (BV’98)

— “Algebraic” reduction = factoring is easy.

Public Key Encryption
from trapdoor permutations

RSA in practice

RSA With Low public exponent

To speed up RSA encryption use a small e: c =m® (mod N)

e Minimum value: e=3 (gcd(e, (N)) =1)
e Recommended value: e=65537=215+1

Encryption: 17 multiplications (square 16 times, then multiply 1 time)

Asymmetry of RSA: fast enc. / slow dec.

Key lengths

Security of public key system should be comparable to security
of symmetric cipher:

RSA
Cipher key-size Modulus size
80 bits 1024 bits
128 bits 3072 bits

256 bits (AES) 15360 bits

Implementation attacks

Timing attack: [Kocher etal. 1997] , [BB’04]
The time it takes to compute ¢ (mod N) can expose d

Power attack: [Kocher et al. 1999)
The power consumption of a smartcard while
it is computing ¢ (mod N) can expose d.

Faults attack: [BDL'97]
A computer error during ¢ (mod N) can expose d.

A common defense: check output. 10% slowdown.

