
Public Key Encryption
from trapdoor permutations

Public key encryption:
definitions and security

Public key encryption

E D

Alice Bob

pk sk

m c c m

Bob: generates (PK, SK) and gives PK to Alice

Applications

Session setup (for now, only eavesdropping security)

Non-interactive applications: (e.g. Email)

• Bob sends email to Alice encrypted using pkalice

• Note: Bob needs pkalice (public key management)

Generate (pk, sk)

Alice

choose random x
(e.g. 48 bytes)

Bobpk

E(pk, x)
x

Public key encryption

Def: a public-key encryption system is a triple of algs. (G, E, D)

• G(): randomized alg. outputs a key pair (pk, sk)

• E(pk, m): randomized alg. that takes m∈M and outputs c ∈C

• D(sk,c): det. alg. that takes c∈C and outputs m∈M or ⊥

Consistency: ∀(pk, sk) output by G :

∀m∈M: D(sk, E(pk, m)) = m

Security: eavesdropping
For b=0,1 define experiments EXP(0) and EXP(1) as:

Def: E =(G,E,D) is sem. secure (a.k.a IND-CPA) if for all efficient A:

AdvSS [A,E] = |Pr[EXP(0)=1] – Pr[EXP(1)=1] | < negligible

Chal.b Adv. A

(pk,sk)G()
m0 , m1 M : |m0| = |m1|

c  E(pk, mb) b’  {0,1}

EXP(b)

pk

Relation to symmetric cipher security

Recall: for symmetric ciphers we had two security notions:

• One-time security and many-time security (CPA)

• We showed that one-time security ⇒ many-time security

For public key encryption:

• One-time security ⇒ many-time security (CPA)

(follows from the fact that attacker can encrypt by himself)

• Public key encryption must be randomized

Security against active attacks

attacker

skserver

pkserver

to: caroline@gmail body

Attacker is given decryption of msgs
that start with “to: attacker”

What if attacker can tamper with ciphertext?

to: attacker@gmail body

attacker:

mail server
(e.g. Gmail)

Caroline

(pub-key) Chosen Ciphertext Security: definition

E = (G,E,D) public-key enc. over (M,C). For b=0,1 define EXP(b):

b

Adv. AChal.

(pk,sk)G()

b’  {0,1}

challenge: m0 , m1 M : |m0| = |m1|

c  E(pk, mb)

pk

CCA phase 1: ci  C

mi  D(sk, ci)

CCA phase 2: ci  C : ci ≠ c

mi  D(sk, ci)

Chosen ciphertext security: definition

Def: E is CCA secure (a.k.a IND-CCA) if for all efficient A:

AdvCCA [A,E] = |Pr[EXP(0)=1] – Pr[EXP(1)=1] | is negligible.

Example: Suppose ⟶(to: alice, body) (to: david, body)

Adv. Ab Chal.

(pk,sk)G()

b

chal.: (to:alice, 0) , (to:alice, 1)

c  E(pk, mb)

pk

CCA phase 2: c’ = ≠c

m’  D(sk, c’)

(to: david, b)

(to: david, b)

c

Active attacks: symmetric vs. pub-key

Recall: secure symmetric cipher provides authenticated encryption

[chosen plaintext security & ciphertext integrity]

• Roughly speaking: attacker cannot create new ciphertexts

• Implies security against chosen ciphertext attacks

In public-key settings:

• Attacker can create new ciphertexts using pk !!

• So instead: we directly require chosen ciphertext security

Public Key Encryption
from trapdoor permutations

Constructions

Goal: construct chosen-ciphertext secure public-key encryption

Trapdoor functions (TDF)

Def: a trapdoor func. X⟶Y is a triple of efficient algs. (G, F, F-1)

• G(): randomized alg. outputs a key pair (pk, sk)

• F(pk,⋅): det. alg. that defines a function X ⟶ Y

• F-1(sk,⋅): defines a function Y ⟶ X that inverts F(pk,⋅)

More precisely: ∀(pk, sk) output by G

∀x∈X: F-1(sk, F(pk, x)) = x

Secure Trapdoor Functions (TDFs)
(G, F, F-1) is secure if F(pk, ⋅) is a “one-way” function:

can be evaluated, but cannot be inverted without sk

Def: (G, F, F-1) is a secure TDF if for all efficient A:

AdvOW [A,F] = Pr[x = x’] < negligible

Adv. AChal.

(pk,sk)G()

x ⟵ X x’pk, y  F(pk, x)R

Public-key encryption from TDFs

• (G, F, F-1): secure TDF X ⟶ Y

• (Es, Ds) : symmetric auth. encryption defined over (K,M,C)

• H: X ⟶ K a hash function

We construct a pub-key enc. system (G, E, D):

Key generation G: same as G for TDF

Public-key encryption from TDFs

E(pk, m) :

x ⟵ X, y ⟵ F(pk, x)

k ⟵ H(x), c ⟵ Es(k, m)

output (y, c)

D(sk, (y,c)) :

x ⟵ F-1(sk, y),

k ⟵ H(x), m ⟵ Ds(k, c)

output m

• (G, F, F-1): secure TDF X ⟶ Y

• (Es, Ds) : symmetric auth. encryption defined over (K,M,C)

• H: X ⟶ K a hash function

R

In pictures:

Security Theorem:

If (G, F, F-1) is a secure TDF, (Es, Ds) provides auth. enc.

and H: X ⟶ K is a “random oracle”

then (G,E,D) is CCAro secure.

F(pk, x) Es(H(x), m)

header body

Incorrect use of a Trapdoor Function (TDF)

Never encrypt by applying F directly to plaintext:

Problems:

• Deterministic: cannot be semantically secure !!

E(pk, m) :

output c ⟵ F(pk, m)

D(sk, c) :

output F-1(sk, c)

Public Key Encryption
from trapdoor permutations

The RSA trapdoor
permutation

Review: trapdoor permutations
Three algorithms: (G, F, F-1)

• G: outputs pk, sk. pk defines a function F(pk, ): X → X

• F(pk, x): evaluates the function at x

• F
-1

(sk, y): inverts the function at y using sk

Secure trapdoor permutation:

The function F(pk, ) is one-way (without the trapdoor sk)

The RSA trapdoor permutation

First published: Scientific American, Aug. 1977.

Very widely used:

– SSL/TLS: certificates and key-exchange

– Secure e-mail and file systems

… many others

The RSA trapdoor permutation
G(): choose random primes p,q 1024 bits (300 digits). Set N=pq.

choose integers e , d s.t. e⋅d = 1 (mod (N))

output pk = (N, e) , sk = (N, d)

F-1(sk, y) = yd ; yd = RSA(x)
d

= x
ed

= x

F(pk, x): ; RSA(x) = xe (in ZN)

RSA summarized

• Choose random primes 𝑝 and 𝑞 (keep secret, delete after key generation)

• Calculate 𝑁 = 𝑝. 𝑞 (public)

• Calculate (𝑁) = (𝑝 − 1) ∗ (𝑞 − 1) (keep secret, delete after key generation)

• Choose 𝑒: 1 < 𝑒 < (𝑁) (public, integer and coprime to (N))

• Calculate 𝑑 = 𝑒−1 𝑚𝑜𝑑 (𝑁) (keep secret)

• Public key: 𝐾𝑝 = (𝑁, 𝑒) Private key: 𝐾𝑠 = (𝑁, 𝑑)

• 𝐸 𝐾𝑝 , 𝑥 = 𝑥𝑒 𝑚𝑜𝑑 𝑁 = 𝑐 𝐷 𝐾𝑠 , 𝑐 = 𝑐𝑑 𝑚𝑜𝑑 𝑁 = 𝑥

(𝑥𝑒)𝑑 𝑚𝑜𝑑 𝑁 = 𝑥 𝑚𝑜𝑑 𝑁

The RSA assumption

RSA assumption: RSA is one-way permutation

For all efficient algs. A:

Pr[A(N,e,y) = y1/e] < negligible

where p,q n-bit primes, Npq, yZN
*R R

Review: RSA pub-key encryption (ISO std)

(Es, Ds): symmetric enc. scheme providing auth. encryption.

H: ZN → K where K is key space of (Es,Ds)

• G(): generate RSA params: pk = (N,e), sk = (N,d)

• E(pk, m): (1) choose random x in ZN

(2) y  RSA(x) = xe , k  H(x)

(3) output (y , Es(k,m))

• D(sk, (y, c)): output Ds(H(RSA-1 (y)) , c) = m

k

x

Textbook RSA is insecure

Textbook RSA encryption:

– public key: (N,e) Encrypt: c ⟵me (in ZN)

– secret key: (N,d) Decrypt: cd ⟶m

Insecure cryptosystem (deterministic enc.)!!

– Is not semantically secure and many attacks exist

⇒ The RSA trapdoor permutation is not an encryption scheme!

A simple attack on textbook RSA

Suppose k is 64 bits: k  {0,…,264}. Eve sees: c= ke in ZN

If k = k1k2 where k1, k2 < 234 (prob. 20%) then c/k1
e = k2

e in ZN

Step 1: build table: c/1e, c/2e, c/3e, …, c/234e . time: 234

Step 2: for k2 = 0,…, 234 test if k2
e is in table. time: 234

Output matching (k1, k2). Total attack time: 240 << 264

Web
Browser

Web
Server

CLIENT HELLO

SERVER HELLO (e,N) (d, N)

c=RSA(k)

random
session-key k

Public Key Encryption
from trapdoor permutations

PKCS 1

RSA encryption in practice

Never use textbook RSA.

RSA in practice (since ISO standard is not often used):

Main questions:
– How should the preprocessing be done?
– Can we argue about security of resulting system?

msg
key

Preprocessing

cip
h

ertext

RSA

128-bit

2048-bit

Symm. Enc. Key,
e.g. AES key

PKCS1 v1.5

PKCS1 mode 2: (encryption)

• Resulting value is RSA encrypted

• Widely deployed, e.g. in HTTPS

02 random pad FF msg

RSA modulus size (e.g. 2048 bits)

16 bits 128-bit (key)16-bit~ 1900-bit

RSA() ciphertext c

Public Key Cryptography Standards

Attack on PKCS1 v1.5 (Bleichenbacher 1998)

PKCS1 used in HTTPS:

 attacker can test if 16 MSBs of plaintext = ’02’

Chosen-ciphertext attack: to decrypt a given ciphertext c do:

– Choose r  ZN. Compute c’ ⟵ rec = (r  PKCS1(m))
e

– Send c’ to web server and use response

– Repeat by sending ciphertext queries as many times as needed to recover C

AttackerWeb
Server

d

ciphertextc=

c

yes: continue
no: error

Is this
PKCS1?

02

Baby Bleichenbacher

Suppose N is N = 2n (an invalid RSA modulus). Then:

• Sending c reveals msb(x)

• Sending 2e⋅c = (2x)e in ZN reveals msb(2x mod N) = msb2(x)

• Sending 4e⋅c = (4x)e in ZN reveals msb(4x mod N) = msb3(x)

• … and so on to reveal all of x

AttackerWeb
Server

d

ciphertextc=

c

yes: continue
no: error

is msb=1?

1

compute x⟵cd in ZN

x=PKCS1(m)

HTTPS Defense (RFC 5246)

Attacks discovered by Bleichenbacher and Klima et al. … can be avoided
by treating incorrectly formatted message blocks … in a manner
indistinguishable from correctly formatted RSA blocks. In other words:

1. Generate a string R of 46 random bytes

2. Decrypt the message to recover the plaintext M (session key)

3. If the PKCS#1 padding is not correct (≠ 02)

pre_master_secret = R

• Session will terminate (since client and server ended up with
different session keys)

PKCS1 v2.0: OAEP
New preprocessing function: OAEP [BR94]

Thm [FOPS’01] : RSA is a trap-door permutation 
RSA-OAEP is CCA secure when H,G are random oracles

in practice: use SHA-256 for H and G

H+

G +

plaintext to encrypt with RSA

rand.msg 01 00..0

check pad
on decryption.
reject CT if invalid.

{0,1}n-1

128-bit key pad
2048-bit

2048-bit

RSA()

Optimal Asymmetric
Encryption Padding

Public Key Encryption
from trapdoor permutations

Is RSA a one-way
function?

Is RSA a one-way permutation?

To invert the RSA one-way func. (without d) attacker must compute:

x from c = xe (mod N).

How hard is computing e’th roots modulo N ??

Best known algorithm:
– Step 1: factor N (hard)
– Step 2: compute e’th roots modulo p and q (easy)

• Given both e'th roots, it's easy to combine them together, using the
Chinese remainder theorem to recover the e'th root modulo N.

Shortcuts?

Must one factor N in order to compute e’th roots?

To prove no shortcut exists show a reduction:

– Efficient algorithm for e’th roots mod N

obtains  efficient algorithm for factoring N.

– Oldest problem in public key cryptography (and still open).

Some (weak) evidence no reduction exists: (BV’98)

– “Algebraic” reduction  factoring is easy.

Public Key Encryption
from trapdoor permutations

RSA in practice

RSA With Low public exponent

To speed up RSA encryption use a small e: c = me (mod N)

• Minimum value: e=3 (gcd(e, (N)) = 1)

• Recommended value: e=65537=216+1

Encryption: 17 multiplications (square 16 times, then multiply 1 time)

Asymmetry of RSA: fast enc. / slow dec.

Key lengths

Security of public key system should be comparable to security
of symmetric cipher:

RSA
Cipher key-size Modulus size

80 bits 1024 bits

128 bits 3072 bits

256 bits (AES) 15360 bits

Implementation attacks
Timing attack: [Kocher et al. 1997] , [BB’04]

The time it takes to compute cd (mod N) can expose d

Power attack: [Kocher et al. 1999)
The power consumption of a smartcard while
it is computing cd (mod N) can expose d.

Faults attack: [BDL’97]
A computer error during cd (mod N) can expose d.

A common defense:: check output. 10% slowdown.

