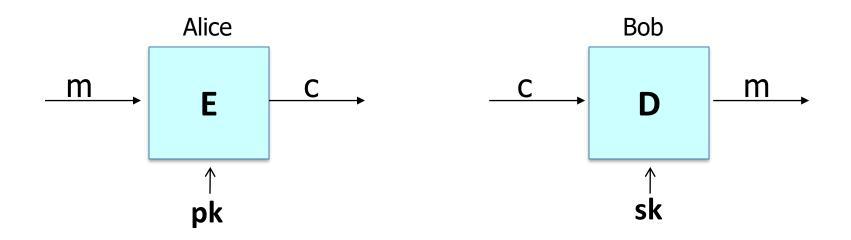


Public Key Encryption from trapdoor permutations

Public key encryption: definitions and security

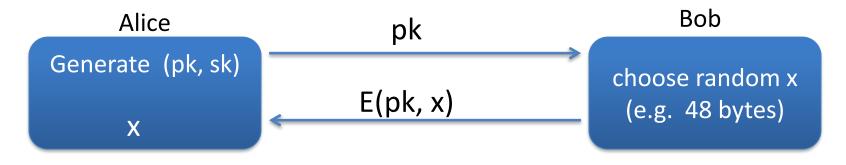
Public key encryption

Bob: generates (PK, SK) and gives PK to Alice



Applications

Session setup (for now, only eavesdropping security)



Non-interactive applications: (e.g. Email)

- Bob sends email to Alice encrypted using pk_{alice}
- Note: Bob needs pk_{alice} (public key management)

Public key encryption

<u>Def</u>: a public-key encryption system is a triple of algs. (G, E, D)

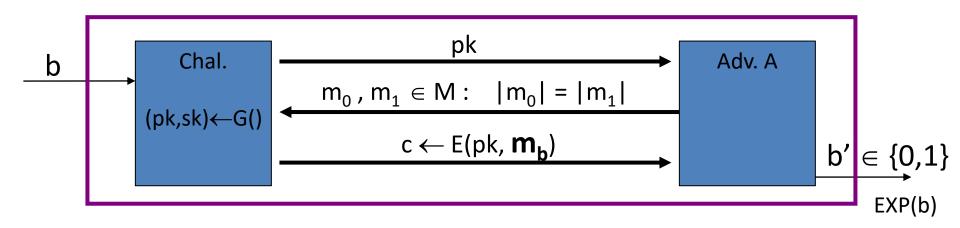
- G(): randomized alg. outputs a key pair (pk, sk)
- E(pk, m): randomized alg. that takes $m \in M$ and outputs $c \in C$
- D(sk,c): det. alg. that takes $c \in C$ and outputs $m \in M$ or \bot

Consistency: \forall (pk, sk) output by G :

 $\forall m \in M$: D(sk, E(pk, m)) = m

Security: eavesdropping

For b=0,1 define experiments EXP(0) and EXP(1) as:



Def: $\mathbb{E} = (G, E, D)$ is sem. secure (a.k.a IND-CPA) if for all efficient A:

 $Adv_{ss}[A,E] = Pr[EXP(0)=1] - Pr[EXP(1)=1] < negligible$

Relation to symmetric cipher security

Recall: for symmetric ciphers we had two security notions:

- One-time security and many-time security (CPA)

For public key encryption:

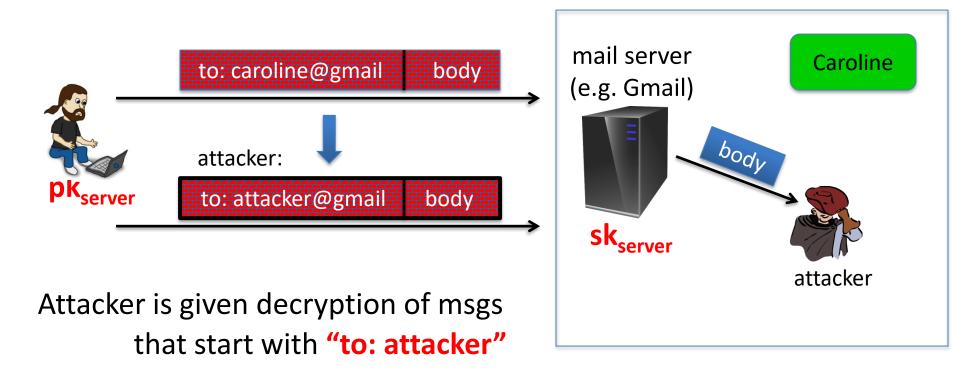
• One-time security \Rightarrow many-time security (CPA)

(follows from the fact that attacker can encrypt by himself)

• Public key encryption **must** be randomized

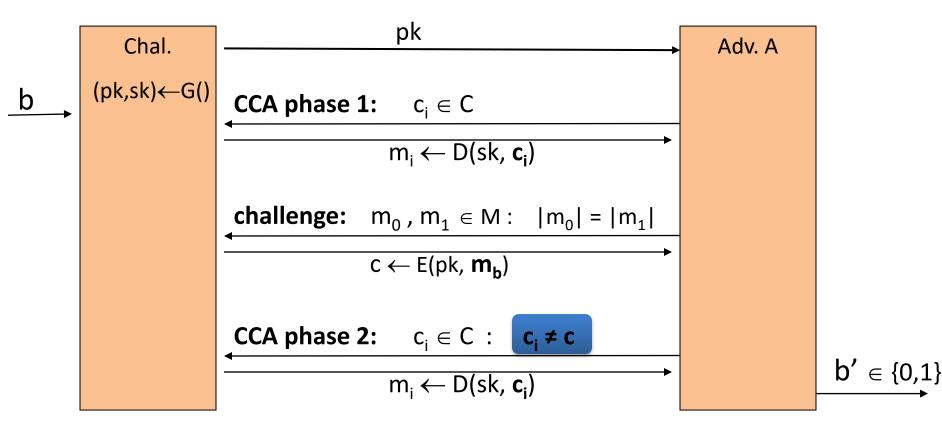
Security against active attacks

What if attacker can tamper with ciphertext?



(pub-key) Chosen Ciphertext Security: definition

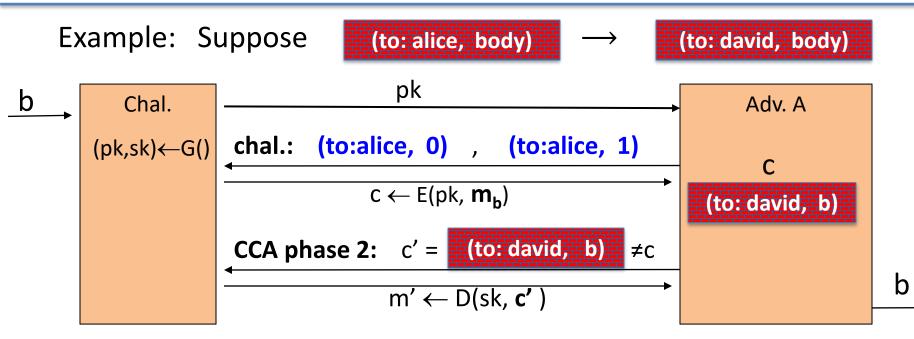
E = (G, E, D) public-key enc. over (M, C). For b=0,1 define EXP(b):



Chosen ciphertext security: definition

<u>Def</u>: \mathbb{E} is CCA secure (a.k.a IND-CCA) if for all efficient A:

 $Adv_{CCA}[A,E] = Pr[EXP(0)=1] - Pr[EXP(1)=1]$ is negligible.



Active attacks: symmetric vs. pub-key

Recall: secure symmetric cipher provides authenticated encryption

[chosen plaintext security & ciphertext integrity]

- Roughly speaking: attacker cannot create new ciphertexts
- Implies security against chosen ciphertext attacks

In public-key settings:

- Attacker **can** create new ciphertexts using pk !!
- So instead: we directly require chosen ciphertext security

Public Key Encryption from trapdoor permutations

Constructions

Goal: construct chosen-ciphertext secure public-key encryption

Trapdoor functions (TDF)

<u>**Def</u>**: a trapdoor func. $X \rightarrow Y$ is a triple of efficient algs. (G, F, F⁻¹)</u>

- G(): randomized alg. outputs a key pair (pk, sk)
- $F(pk, \cdot)$: det. alg. that defines a function $X \longrightarrow Y$
- $F^{-1}(sk, \cdot)$: defines a function $Y \rightarrow X$ that inverts $F(pk, \cdot)$

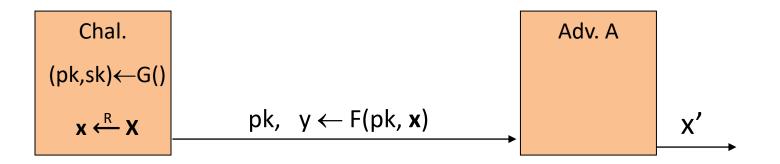
More precisely: \forall (pk, sk) output by G

 $\forall x \in X$: $F^{-1}(sk, F(pk, x)) = x$

Secure Trapdoor Functions (TDFs)

(G, F, F^{-1}) is secure if $F(pk, \cdot)$ is a "one-way" function:

can be evaluated, but cannot be inverted without sk



<u>**Def</u>**: (G, F, F⁻¹) is a secure TDF if for all efficient A:</u>

 $Adv_{OW}[A,F] = Pr[x = x'] < negligible$

Public-key encryption from TDFs

- (G, F, F^{-1}): secure TDF $X \rightarrow Y$
- (E_s, D_s) : symmetric auth. encryption defined over (K,M,C)
- $H: X \longrightarrow K$ a hash function

We construct a pub-key enc. system (G, E, D):

Key generation G: same as G for TDF

Public-key encryption from TDFs

- (G, F, F⁻¹): secure TDF $X \rightarrow Y$
- (E_s, D_s) : symmetric auth. encryption defined over (K,M,C)
- $H: X \longrightarrow K$ a hash function

 $\begin{array}{l} \underline{\mathsf{F(pk,m)}}:\\ x\xleftarrow{^{R}}X, \qquad y\leftarrow{}\mathsf{F(pk,x)}\\ k\leftarrow{}\mathsf{H(x)}, \quad c\leftarrow{}\mathsf{E_{s}(k,m)}\\ output \quad (y,c) \end{array}$

$$\begin{array}{l} \underline{D(sk,(y,c))}:\\ x \leftarrow F^{-1}(sk,y),\\ k \leftarrow H(x), \quad m \leftarrow D_s(k,c)\\ output \quad m \end{array}$$

Security Theorem:

If (G, F, F^{-1}) is a secure TDF, (E_s, D_s) provides auth. enc. and $H: X \rightarrow K$ is a "random oracle" then (G, E, D) is CCA^{ro} secure.

Incorrect use of a Trapdoor Function (TDF)

Never encrypt by applying F directly to plaintext:

E(pk, m):D(sk, c):output $c \leftarrow F(pk, m)$ outputoutput $F^{-1}(sk, c)$

Problems:

• Deterministic: cannot be semantically secure !!

Public Key Encryption from trapdoor permutations

The RSA trapdoor permutation

Review: trapdoor permutations

Three algorithms: (G, F, F⁻¹)

- G: outputs pk, sk. pk defines a function $F(pk, \cdot): X \rightarrow X$
- F(pk, x): evaluates the function at x
- $F^{-1}(sk, y)$: inverts the function at y using sk

Secure trapdoor permutation:

The function $F(pk, \cdot)$ is one-way (without the trapdoor sk)

The RSA trapdoor permutation

First published: Scientific American, Aug. 1977.

Very widely used:

- SSL/TLS: certificates and key-exchange
- Secure e-mail and file systems

... many others

The RSA trapdoor permutation

G(): choose random primes $p,q \approx 1024$ bits (300 digits). Set **N=pq**. choose integers **e**, **d** s.t. **e** · **d** = **1** (mod φ (**N**)) output pk = (N, e), sk = (N, d)

F(pk, x):
$$\mathbb{Z}_N^* \to \mathbb{Z}_N^*$$
; RSA(x) = x^e (in Z_N)

F⁻¹(sk, y) = y^d;
$$y^d$$
 = **RSA(x)^d** = x^{ed} = x

RSA summarized

- Choose random primes *p* and *q*
- Calculate N = p.q
- Calculate $\phi(N) = (p 1) * (q 1)$
- Choose $e: 1 < e < \varphi(N)$
- Calculate $d = e^{-1} \mod \varphi(N)$

(keep secret, delete after key generation)

(public)

(keep secret, delete after key generation)

(public, integer and coprime to $\phi(N)$)

(keep secret)

• Public key: $K_p = (N, e)$

•
$$E(K_p, x) = x^e \mod N = c$$

Private key: $K_s = (N, d)$ $D(K_s, c) = c^d \mod N = x$ $(x^e)^d \mod N = x \mod N$

The RSA assumption

RSA assumption: RSA is one-way permutation

For all efficient algs. A: $Pr\left[A(N,e,y) = y^{1/e}\right] < negligible$ where $p,q \leftarrow R$ n-bit primes, $N \leftarrow pq$, $y \leftarrow R^{R} Z_{N}^{*}$

Review: RSA pub-key encryption (ISO std)

(E_s , D_s): symmetric enc. scheme providing auth. encryption. H: $Z_N \rightarrow K$ where K is key space of (E_s , D_s)

- G(): generate RSA params: pk = (N,e), sk = (N,d)
- **E**(pk, m): (1) choose random x in Z_N

(2)
$$y \leftarrow RSA(x) = x^e$$
, $k \leftarrow H(x)$
(3) output (y, $E_s(k,m)$)
 k
D(sk, (y, c)): output $D_s(H(RSA^{-1}(y)), c) = m$

Textbook RSA is insecure

Textbook RSA encryption:

- public key: (N,e)
- secret key: (N,d)

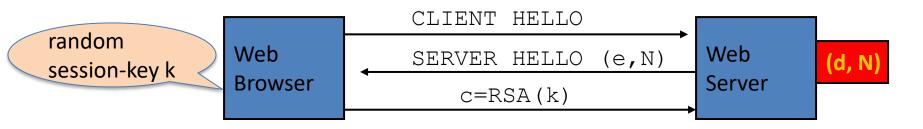
Encrypt:
$$\mathbf{c} \leftarrow \mathbf{m}^{\mathbf{e}}$$
 (in Z_N)
Decrypt: $\mathbf{c}^{\mathbf{d}} \rightarrow \mathbf{m}$

Insecure cryptosystem (deterministic enc.)!!

Is not semantically secure and many attacks exist

⇒ The RSA trapdoor permutation is not an encryption scheme!

A simple attack on textbook RSA



Suppose k is 64 bits: $k \in \{0,...,2^{64}\}$. Eve sees: $c = k^e$ in Z_N

If
$$\mathbf{k} = \mathbf{k_1} \cdot \mathbf{k_2}$$
 where $\mathbf{k_1}, \mathbf{k_2} < 2^{34}$ (prob. $\approx 20\%$) then $\mathbf{c/k_1}^e = \mathbf{k_2}^e$ in Z_N

Step 1: build table: $c/1^{e}$, $c/2^{e}$, $c/3^{e}$, ..., $c/2^{34e}$. time: 2^{34}

Step 2: for $k_2 = 0, ..., 2^{34}$ test if k_2^{e} is in table. time: 2^{34}

Output matching (k_1, k_2) . Total attack time: $\approx 2^{40} \ll 2^{64}$

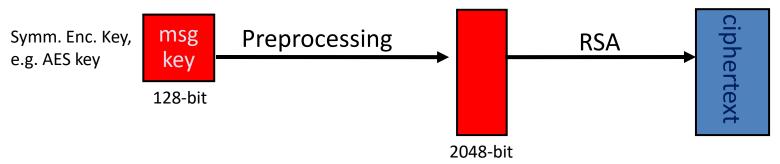
Public Key Encryption from trapdoor permutations

PKCS 1

RSA encryption in practice

Never use textbook RSA.

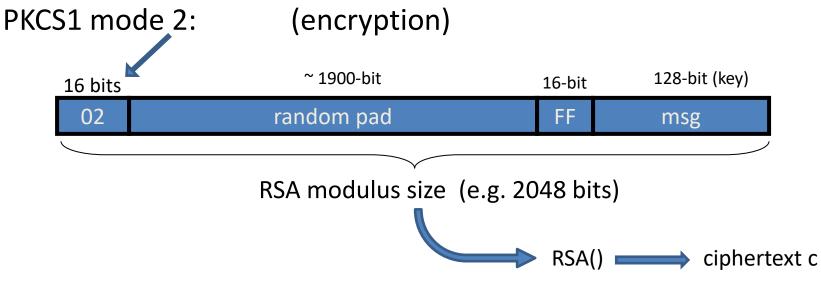
RSA in practice (since ISO standard is not often used):



Main questions:

- How should the preprocessing be done?
- Can we argue about security of resulting system?

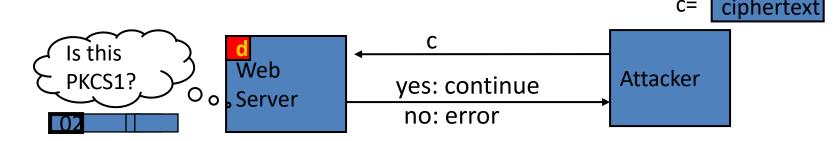
PKCS1 v1.5 Public Key Cryptography Standards



- Resulting value is RSA encrypted
- Widely deployed, e.g. in HTTPS

Attack on PKCS1 v1.5 (Bleichenbacher 1998)

PKCS1 used in HTTPS:



C=

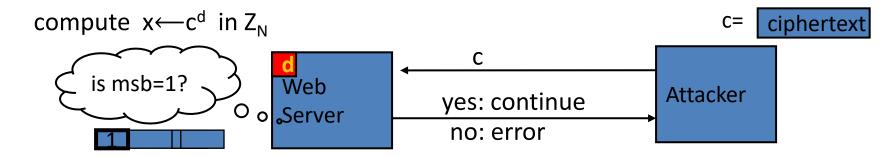
 \Rightarrow attacker can test if 16 MSBs of plaintext = '02'

Chosen-ciphertext attack: to decrypt a given ciphertext C do:

- Choose $r \in Z_N$. Compute $c' \leftarrow r^e \cdot c = (r \cdot PKCS1(m))^e$
- Send c' to web server and use response

- Repeat by sending ciphertext queries as many times as needed to recover C

Baby Bleichenbacher



Suppose N is $N = 2^n$ (an invalid RSA modulus). Then:

- Sending c reveals msb(x) x=PKCS1(m)
- Sending 2^e·c = (2x)^e in Z_N reveals msb(2x mod N) = msb₂(x)
- Sending $4^{e} \cdot c = (4x)^{e}$ in Z_{N} reveals msb(4x mod N) = msb₃(x)
- ... and so on to reveal all of x

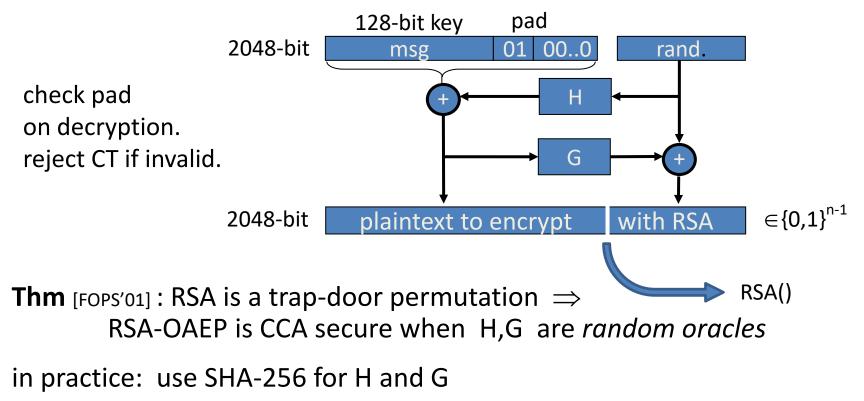
HTTPS Defense (RFC 5246)

Attacks discovered by Bleichenbacher and Klima et al. ... can be avoided by treating incorrectly formatted message blocks ... in a manner indistinguishable from correctly formatted RSA blocks. In other words:

- 1. Generate a string *R* of 46 random bytes
- 2. Decrypt the message to recover the plaintext M (session key)
- Session will terminate (since client and server ended up with different session keys)

PKCS1 v2.0: OAEP Optimal Asymmetric Encryption Padding

New preprocessing function: OAEP [BR94]



Public Key Encryption from trapdoor permutations

Is RSA a one-way function?

Is RSA a one-way permutation?

To invert the RSA one-way func. (without d) attacker must compute:

x from $c = x^e \pmod{N}$.

How hard is computing e'th roots modulo N ??

Best known algorithm:

- Step 1: factor N (hard)
- Step 2: compute e'th roots modulo p and q (easy)
 - Given both e'th roots, it's easy to combine them together, using the Chinese remainder theorem to recover the e'th root modulo N.

Shortcuts?

Must one factor N in order to compute e'th roots?

To prove no shortcut exists show a reduction:

Efficient algorithm for e'th roots mod N

obtains \Rightarrow efficient algorithm for factoring N.

- Oldest problem in public key cryptography (and still open).

Some (weak) evidence no reduction exists: (BV'98)

- "Algebraic" reduction \Rightarrow factoring is easy.

Public Key Encryption from trapdoor permutations

RSA in practice

RSA With Low public exponent

To speed up RSA encryption use a small $e: c = m^e \pmod{N}$

- Minimum value: **e=3** (gcd(e, $\phi(N)$) = 1)
- Recommended value: **e=65537=2**¹⁶**+1**

Encryption: 17 multiplications (square 16 times, then multiply 1 time)

<u>Asymmetry of RSA:</u> fast enc. / slow dec.

Key lengths

Security of public key system should be comparable to security of symmetric cipher:

<u>Cipher key-size</u>	RSA <u>Modulus size</u>
80 bits	1024 bits
128 bits	3072 bits
256 bits (AES)	15360 bits

Implementation attacks

Timing attack: [Kocher et al. 1997] , [BB'04] The time it takes to compute c^d (mod N) can expose d

Power attack: [Kocher et al. 1999) The power consumption of a smartcard while it is computing c^d (mod N) can expose d.

Faults attack: [BDL'97] A computer error during c^d (mod N) can expose d.

A common defense: check output. 10% slowdown.